Co-Enriching Microflora Associated with Culture Based Methods to Detect Salmonella from Tomato Phyllosphere
نویسندگان
چکیده
The ability to detect a specific organism from a complex environment is vitally important to many fields of public health, including food safety. For example, tomatoes have been implicated numerous times as vehicles of foodborne outbreaks due to strains of Salmonella but few studies have ever recovered Salmonella from a tomato phyllosphere environment. Precision of culturing techniques that target agents associated with outbreaks depend on numerous factors. One important factor to better understand is which species co-enrich during enrichment procedures and how microbial dynamics may impede or enhance detection of target pathogens. We used a shotgun sequence approach to describe taxa associated with samples pre-enrichment and throughout the enrichment steps of the Bacteriological Analytical Manual's (BAM) protocol for detection of Salmonella from environmental tomato samples. Recent work has shown that during efforts to enrich Salmonella (Proteobacteria) from tomato field samples, Firmicute genera are also co-enriched and at least one co-enriching Firmicute genus (Paenibacillus sp.) can inhibit and even kills strains of Salmonella. Here we provide a baseline description of microflora that co-culture during detection efforts and the utility of a bioinformatic approach to detect specific taxa from metagenomic sequence data. We observed that uncultured samples clustered together with distinct taxonomic profiles relative to the three cultured treatments (Universal Pre-enrichment broth (UPB), Tetrathionate (TT), and Rappaport-Vassiliadis (RV)). There was little consistency among samples exposed to the same culturing medias, suggesting significant microbial differences in starting matrices or stochasticity associated with enrichment processes. Interestingly, Paenibacillus sp. (Salmonella inhibitor) was significantly enriched from uncultured to cultured (UPB) samples. Also of interest was the sequence based identification of a number of sequences as Salmonella despite indication by all media, that samples were culture negative for Salmonella. Our results substantiate the nascent utility of metagenomic methods to improve both biological and bioinformatic pathogen detection methods.
منابع مشابه
The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes
BACKGROUND Contamination of tomatoes by Salmonella can occur in agricultural settings. Little is currently understood about how agricultural inputs such as pesticide applications may impact epiphytic crop microflora and potentially play a role in contamination events. We examined the impact of two materials commonly used in Virginia tomato agriculture: acibenzolar-S-methyl (crop protectant) and...
متن کاملRole of Soil, Crop Debris, and a Plant Pathogen in Salmonella enterica Contamination of Tomato Plants
BACKGROUND In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS Thi...
متن کاملDifferential attachment to and subsequent contamination of agricultural crops by Salmonella enterica.
U.S. salmonellosis outbreaks have occurred following consumption of tomato and cantaloupe but not lettuce. We report differential contamination among agricultural seedlings by Salmonella enterica via soil. Members of the family Brassicaceae had a higher incidence of outbreak than carrot, lettuce, and tomato. Once they were contaminated, phyllosphere populations were similar, except for tomato. ...
متن کاملXanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere.
Salmonella enterica rarely grows on healthy, undamaged plants, but its persistence is influenced by bacterial plant pathogens. The interactions between S. enterica, Xanthomonas perforans (a tomato bacterial spot pathogen), and tomato were characterized. We observed that virulent X. perforans, which establishes disease by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunit...
متن کاملInfluence of soil fumigation by methyl bromide and methyl iodide on rhizosphere and phyllosphere microbial community structure.
Rhizosphere and phyllosphere microbial communities were evaluated on roots and leaves of growth chamber-grown lettuce (Lactuca sativa (L.) cv. Green Forest) plants by culture-dependent and -independent methods after soil fumigation. Denaturing gradient gel electrophoresis (DGGE) with 16S rRNA primers followed by cloning and sequencing was used to identify major rRNA bands from the rhizosphere a...
متن کامل